Foliation-coupling Dirac structures
نویسندگان
چکیده
منابع مشابه
2 4 Ja n 20 05 Foliation - coupling Dirac structures by Izu Vaisman
We extend the notion of " coupling with a foliation " from Poisson to Dirac structures and get the corresponding generalization of the Vorobiev characterization of coupling Poisson structures [20, 18]. We show that any Dirac structure is coupling with the fibers of a tubular neighborhood of an embedded presymplectic leaf, give new proofs of the results of Dufour and Wade [9] on the transversal ...
متن کاملIntegration of Coupling Dirac Structures
Coupling Dirac structures are Dirac structures defined on the total space of a fibration, generalizing hamiltonian fibrations from symplectic geometry, where one replaces the symplectic structure on the fibers by a Poisson structure. We study the associated Poisson gauge theory, in order to describe the presymplectic groupoid integrating coupling Dirac structures. We find the obstructions to in...
متن کاملdirac structures
in this paper we introduce the concept of dirac structures on (hermitian) modules and vectorbundles and deduce some of their properties. among other things we prove that there is a one to onecorrespondence between the set of all dirac structures on a (hermitian) module and the group of allautomorphisms of the module. this correspondence enables us to represent dirac structures on (hermitian)mod...
متن کاملDirac structures for generalized
We establish some fundamental relations between Dirac subbundles L for the generalized Courant algebroid (A⊕A, φ+W ) over a differentiable manifold M and the associated Dirac subbubndles L̃ for the corresponding Courant algebroid Ã⊕ Ã over M × IR.
متن کاملE1(M )-Dirac structures and Jacobi structures
Using E1(M)-Dirac structures, a notion introduced by A. Wade, we obtain conditions under which a submanifold of a Jacobi manifold has an induced Jacobi structure, generalizing the result obtained by Courant for Dirac structures and submanifolds of a Poisson manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2006
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2005.05.007